8,918 research outputs found

    Spin-polarized states of nuclear matter

    Get PDF
    The equations of state of spin-polarized nuclear matter and pure neutron matter are studied in the framework of the Brueckner-Hartree-Fock theory including a three-body force. The energy per nucleon EA(δ)E_A(\delta) calculated in the full range of spin polarization δ=ρρρ{\delta} = \frac{\rho_{\uparrow}-\rho_{\downarrow}}{\rho} for symmetric nuclear matter and pure neutron matter fulfills a parabolic law. In both cases the spin-symmetry energy is calculated as a function of the baryonic density along with the related quantities such as the magnetic susceptibility and the Landau parameter G0G_0. The main effect of the three-body force is to strongly reduce the degenerate Fermi gas magnetic susceptibility even more than the value with only two body force. The EOS is monotonically increasing with the density for all spin-aligned configurations studied here so that no any signature is found for a spontaneous transition to a ferromagnetic state.Comment: Contribution to GISELDA Meeting, 14-18 January, 2002 (Frascati), to appear in World Scientific (Singapore

    Su(3) Algebraic Structure of the Cuprate Superconductors Model based on the Analogy with Atomic Nuclei

    Full text link
    A cuprate superconductor model based on the analogy with atomic nuclei was shown by Iachello to have an su(3)su(3) structure. The mean-field approximation Hamiltonian can be written as a linear function of the generators of su(3)su(3) algebra. Using algebraic method, we derive the eigenvalues of the reduced Hamiltonian beyond the subalgebras u(1)u(2)u(1)\bigotimes u(2) and so(3)so(3) of su(3)su(3) algebra. In particular, by considering the coherence between s- and d-wave pairs as perturbation, the effects of coherent term upon the energy spectrum are investigated

    Transport parameters in neutron stars from in-medium NN cross sections

    Full text link
    We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter and β\beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two and three body interaction. The investigation covers a wide baryon density range as requested in the applications to neutron stars. The results for the transport coefficients in β\beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of non radial modes in neutron stars

    Landau parameters of nuclear matter in the spin and spin-isospin channels

    Get PDF
    The equation of state of spin and isospin polarized nuclear matter is determined in the framework of the Brueckner theory including three-body forces. The Landau parameters in the spin and spin-isospin sectors are derived as a function of the baryonic density. The results are compared with the Gamow-Teller collective modes. The relevance of G0G_0 and G0G_0' for neutron stars is shortly discussed, including the magnetic susceptibility and the neutron star cooling.Comment: 2 pages, 2 figures, RevTex4 forma

    Spin- and isospin-polarized states of nuclear matter in the Dirac-Brueckner-Hartree-Fock model

    Full text link
    Spin-polarized isospin asymmetric nuclear matter is studied within the Dirac-Brueckner-Hartree-Fock approach. After a brief review of the formalism, we present and discuss the self-consistent single-particle potentials at various levels of spin and isospin asymmetry. We then move to predictions of the energy per particle, also under different conditions of isospin and spin polarization. Comparison with the energy per particle in isospin symmetric or asymmetric unpolarized nuclear matter shows no evidence for a phase transition to a spin ordered state, neither ferromagnetic nor antiferromagnetic.Comment: 8 pages, 6 figure

    Medium mass fragments production due to momentum dependent interactions

    Full text link
    The role of system size and momentum dependent effects are analyzed in multifragmenation by simulating symmetric reactions of Ca+Ca, Ni+Ni, Nb+Nb, Xe+Xe, Er+Er, Au+Au, and U+U at incident energies between 50 MeV/nucleon and 1000 MeV/nucleon and over full impact parameter zones. Our detailed study reveals that there exist a system size dependence when reaction is simulated with momentum dependent interactions. This dependence exhibits a mass power law behavior.Comment: 5 figure
    corecore